

Image Inpainting and Editing with Structural Prior Guidance

Chenjie Cao, School of Data Science, Fudan University ccjdurandal422@163.com

Image Inpainting

Task: Sketch/Edge based Image Inpainting/Editing

Edgeconnect, Nazeri, Kamyar, et al. ICCV workshop (2019)

DeepFaceDrawing, Chen et al. SIGGRAPH (2020)

Line/Edge priors \rightarrow inpainting/synthesis

Cao et al, Learning a Sketch Tensor Space for Image Inpainting of Man-made Scenes. ICCV2021 Dong et al, Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding. CVPR2022 Xue N et al. [HAWP] Holistically-attracted wireframe parsing CVPR2020

Learning a Sketch Tensor Space for Image Inpainting of Man-made Scenes

Chenjie Cao, Yanwei Fu School of Data Science, Fudan University {20110980001, yanweifu}@fudan.edu.cn

ICCV 2021

Codes and models are released in https://ewrfcas.github.io/MST_inpainting

Filling in the Missing critical structures for man-made scenes

Motivation

Unreliable pattern transfer for corrupted priors

Motivation:

- Introduce discretely represented wireframes to the image inpainting.
- Learning a more robust prior detector for masked images.
- Improve inpainting performance efficiently.

Xue N, Wu T, Bai S, et al. Holistically-attracted wireframe parsing CVPR2020.

Overview

Model Pipeline:

- Use LSM-HAWP and canny detector to extract line and edge maps.
- Refine structures by Pyramid Structure Sub-Encoder (PSS) to sketch tensor space.
- Decoder predicts the final inpainted image.

Line Segment Masking (LSM)

Line Segment Masking (LSM):

- HAWP failed to directly achieve good results for masked images.
- We use LSM as a data augmentation to improve HAWP as LSM-HAWP.

	unm	asked te	stset	masked testset			
Threshold	5	10	15	5	10	15	
HAWP	62.16	65.94	67.64	35.39	38.47	40.15	
LSM-HAWP	63.20	67.06	68.70	48.93	53.30	55.39	

Pyramid Structure Sub-Encoder (PSS)

Pyramid Structure Sub-Encoder:

- Partially Gated Convolutions
- Efficient Attention Block
- Pyramid Decomposing Separable (PDS) Block

Pyramid Decomposing Separable (PDS)

- Learning line and edge embeddings respectively
- Embeddings are combined with a trade-off attention block to predict coarse inpainted results.
- Optimizing multi-scale structures with two discriminators for better decoupling of lines and edges.

Experiments: dataset

Figure 1. The bar chart of the scenes with top20 average line segment (confidence ≥ 0.925) numbers of Places2.

Datasets: (training/validation)

- ShanghaiTech (S.-T.) (5000/462)
- Man-made Places2 (P2M) (50000/1000)
- Comprehensive Places2 (P2C) (50000/1000)
- York Urban (Y.-U.) (-/102)

Figure 2. The bar chart of the line segment (confidence ≥ 0.925) numbers of the comprehensive Places2 (P2C).

Experiments: Qualitative Results

• * means the object removal mode

Experiments: Qualitative Results and Ablations

Ground truth Masked input EC edge Ours edge Ours results

(a) input (b) Ours w/o lines (c) Ours w/o PDS

(d) Ours

(a) input (b) PSS (edge) (c) PSS (edge+line) Figure 4. Qualitative results w. and w./o. lines in ShanghaiTech.

Experiments: Open Problems

- Are CNNs good enough to tackle the structural recovery?
- Can we extend the edge/line to the high-resolution inpainting?

How about modeling the priors with **Transformers**?

Preliminaries: Image Completion with Transformers (ICT)

Recovering low-resolution images (priors) with bi-directional transformer; then using the guided Upsampling network (CNN) to recover high-resolution results

Attention is good at recovering structures

Ziyu Wan, Jingbo Zhang, Dongdong Chen, and Jing Liao. High-fidelity pluralistic image completion with transformers. ICCV 2021.

Preliminaries: Resolution-robust Inpainting with Fourier Conv (LaMa)

f(x,y)

|F(u,v)|

Fourier convolutions are used to for the high-resolution image inpainting 256x256 trained model can be generalized to high-resolution images

Roman Suvorov, Elizaveta Logacheva, et al. Resolution-robust large mask inpainting with fourier convolutions. WACV 2022.

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (ZITS)

Qiaole Dong, Chenjie Cao, Yanwei Fu[†] School of Data Science, Fudan University

{18307130096,20110980001,yanweifu}@fudan.edu.cn

CVPR 2022

Codes&Models: https://github.com/DQiaole/ZITS_inpainting

(a) Masked Image (b) LaMa (c) Ours

Challenges

Limited receptive fields

Missing holistic structures

No positional information in masked regions

Motivation

- Using Transformer to recover structures in sketch tensor space.
- Incrementally finetuning pre-trained inpainting models for additional structural priors.
- Introduce the positional encoding for masked regions.

Overview

Transformer Structure Restoration (TSR)

Using interleaved axial-transformer and vanilla-transformer to save computation and improve the performance.

						Edge		Line		Avg		
	FPS	GPU Memory (MB)	-	Axial	RPE	P.	R.	F1	P .	R.	F1	F1
w./o. Axial	6.41	14845	-			38.27	33.12	34.78	52.93	65.79	57.73	46.26
with Axial	7.89	10547	_	✓		38.30	32.90	34.64	52.74	66.48	57.87	46.26
			-	~	~	37.34	34.25	35.10	53.60	66.23	58.35	46.72

Simple Structure Upsampler (SSU)

trained with both edge and line

(k) Upsampled edge and line from the model trained with line only

Ambiguities between 256 canny edges (b) and 512 canny edges (c).

Discrete lines are consistent in both 256x256 and 512x512.

Optimized by **discrete lines** (k) works better than **lines and edges** (j).

Masked Positional Encoding (MPE)

Table 3. Ablation studies of MPE on 512×512 Places2 finetuned with dynamic resolutions from 256 to 512.

	PSNR ↑	SSIM↑	FID↓	LPIPS↓
with MPE	24.23	0.881	26.08	0.133
w./o. MPE	24.20	0.880	26.29	0.135

Figure 9. Ablations of 512×512 Places2 with and without MPE.

(c) Four channels of masking directions \mathbf{D}_{dir}

Figure 4. The illustration of our masking relative position encoding. (a) Input mask, (b) masking distance D_{dis} and the all-one 3×3 kernel, (c) masking directions D_{dir} and their kernels.

Qualitative results

1024x1024 Inpainting Results

(a) Masked Input

(a) Masked Image

(b) LaMa

(c) Ours

Image Editing

Transformer-based image generation

(d) the exact same cat on the top as a sketch on the bottom

(a) iGPT[1]

(b) DALLE[2]

(c) Taming[3]

[1] Chen M, Radford A, Child R, et al. Generative pretraining from pixels[C] PMLR, 2020.

[2] Ramesh A, Pavlov M, Goh G, et al. Zero-shot text-to-image generation[J]. arXiv preprint arXiv:2102.12092, 2021.

[3] Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis[C] CVPR, 2021.

Two important mechanisms in Transformer generation

• 1. Patch-wise Autoregressive Generation

• 2. Discreate Learning (DALLE, Taming, NvWA)

Esser, Patrick, Robin Rombach, and Bjorn Ommer. "Taming transformers for high-resolution image synthesis." CVPR 2021.

The Image Local Autoregressive Transformer

Chenjie Cao, Yuxin Hong, Xiang Li, Chengrong Wang, Chengming Xu, Yanwei Fu, Xiangyang Xue School of Data Science

Fudan University {20110980001, yanweifu}@fudan.edu.cn

NeurIPS2021

Codes&Models: https://github.com/ewrfcas/iLAT

(A) Inputs and outputs of local generation compared with previous works

(B) Comparison of different generative modes

Problems of the Autoregressive Generation

Pipeline (VQGAN->TS-VQGAN)

Two-stream convolution based VQGAN

Pipeline (Local Autoregressive Transformer)

Pipeline (Training Loss)

Pipeline (Inference)

Qualitative Results and Ablations

(A) Ablation in pose guiding

(B) Ablation in face editing

(C) Qualitative results in SDF

•

High-fidelity Portrait Editing via Exploring Differentiable Guided Sketches from the Latent Space

Chengrong Wang*Chenjie Cao[†]Yanwei Fu[†]Xiangyang Xue^{†*}

* School of Computer Science, Fudan University, Shanghai, China
[†] School of Data Science, Fudan University, Shanghai, China

ICASSP2022

(a) Input

(c) Result by DeepPS

(b) Result by SC-FEGAN

i Input

DeepPS

Ours

Preliminaries: GAN inversion

• We could optimize the latent code of a pre-trained GAN (StyleGAN) for a high-quality generation

Style fusion with GAN inversion

Up: origin image, bottom: generated image from StyleGAN with optimized latent codes

Pictures are from Image2style (Rameen Abdal, et al. 2019)

Methods

$$\mathcal{L}_{perc}(\mathbf{I_1}, \mathbf{I_2}) = \|\sum_{j=1}^{5} \frac{\lambda_j}{N_j} (\mathbf{F}_j(\mathbf{I_1}) - \mathbf{F}_j(\mathbf{I_2}))\|_2^2$$

Perceptual loss (unmasked regions)

$$\mathcal{D}_{sketch}(\mathbf{S_1},\mathbf{S_2}) = \sum_{j} \| (\mathbf{P}_j(\mathbf{S_1}) - \mathbf{P}_j(\mathbf{S_2})) \|_1$$

Multi-scale sketch loss (masked regions)

Wang, Chengrong, et al. "High-Fidelity Portrait Editing Via Exploring Differentiable Guided Sketches from the Latent Space." ICASSP2022.

Thanks!

Chenjie Cao, School of Data Science, Fudan University ccjdurandal163@gmail.com